Cyclic Suspension of Knots and Periodicity of Signature for Singularities

نویسندگان

  • WALTER D. NEUMANN
  • Glen E. Bredon
چکیده

By a knot we mean a pair (S, M~) with M~ a smooth closed oriented submanifold of S (m^3). If such a knot is given and i:S-> gm+z j s t j ^ standard embedding, then one can isotope / in an essentially unique way (Lemma 1 below) to an embedding j :s -+S whose intersection with iS is M c S transversally. The «-fold cyclic branched cover of (S, iS) branched along (jS, M~) exists uniquely and is a manifold pair (S%, MTM)9 where STM +2 is diffeomorphic to the sphere. This pair we call the n-fold cyclic suspension of (S, M~), or briefly nsuspension. This construction is motivated by the following theorem. Recall that if g:(C, 0)—•((?, 0) is a polynomial with isolated singularity at zero, the link Kg^S*' of g is the intersection of g"^) with a sufficiently small sphere S~^ C at the origin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seiberg - Witten Invariants and Surface Singularities Iii ( Splicings and Cyclic Covers )

We verify the conjecture formulated in [31] for suspension singularities of type g(x, y, z) = f(x, y) + z, where f is an irreducible plane curve singularity. More precisely, we prove that the modified Seiberg-Witten invariant of the linkM of g, associated with the canonical spin structure, equals −σ(F )/8, where σ(F ) is the signature of the Milnor fiber of g. In order to do this, we prove gene...

متن کامل

Seiberg–Witten invariants and surface singularities: splicings and cyclic covers

We verify the conjecture formulated in [36] for suspension singularities of type g(x, y, z) = f(x, y) + z, where f is an irreducible plane curve singularity. More precisely, we prove that the modified Seiberg–Witten invariant of the link M of g, associated with the canonical spin structure, equals −σ(F )/8, where σ(F ) is the signature of the Milnor fiber of g. In order to do this, we prove gen...

متن کامل

REGULAR O (n)-MANIFOLDS, SUSPENSION OF KNOTS, AND KNOT PERIODICITY

1. Statement of the main results. It will be convenient for us to define an n-knot to be a smooth, connected, oriented, n-dimensional (closed) submanifold IP of S (oriented). If X" is homeomorphic to S, then we call it a spherical knot. All manifolds in this note will be oriented and all constructions we consider will induce canonical orientations. This will be understood and not commented upon...

متن کامل

Detection of Singularities Using Segment Approximation

We discuss best segment approximation (with free knots) by polynomials to piecewise analytic functions on a real interval. It is shown that, if the degree of the polynomials tends to infinity and the number of knots is the same as the number of singularities of the function, then the optimal knots converge geometrically fast to the singularities. When the degree is held fixed and the number of ...

متن کامل

Rings of Singularities

This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1974